KU LEUVEN

Evolution of magnetized CMEs in the inner heliosphere

S. Poedts, J. Pomoell

Centre for mathematical Plasma Astrophysics Dept. Mathematics KU Leuven

ILWS Science for Space Weather, 25 Jan 2016, Goa, India

Euhforia: long term goals 'European heliospheric forecasting information asset'

Our long-term goal is to develop novel models to address the growing need for accurate space weather predictions :

- predict the magnetic structure of coronal mass ejections
- predict the properties of solar energetic particle (SEP) events
- provide tailored SW models

Solar wind modeling

Taking coronal model as lower boundary condition

- Potential field source surface (PFSS) model (e.g. Wang & Sheeley; DeRosa & Schrijver,..)
- CORHEL/MAS model (Linker et al.)
- SWMF/S.C.-IH (van der Holst et al.)
- Nonlinear force-free field (NLFFF) models (Yeates & MacKay; Tadesse, Wiegelmann, et al.)
- AMR-CESE-MHD model (Feng et al. 2012)

Solar wind modeling

Taking coronal model as lower boundary condition

Solar wind modeling

Taking coronal model as lower boundary condition

Euhforia

'European heliospheric forecasting information asset'

cpa ku leuven

Very first test Euhforia

Euhforia

'European heliospheric forecasting information asset'

Heliosphere model with CMEs

AIM: Compute time dependent evolution of MHD variables from 0.1 AU to 1 AU and beyond (up to a few AU)

INPUT: Plasma properties at 0.1 AU from coronal model, **cone model** CME parameters from fits to observations

METHOD: Second order finite volume MHD scheme

Cone-model CMEs inserted at 21.5 AU as time-dependent boundary condition

Ballistic CME test (same background wind)

Superposition of a cone CME, introduced with a time-dependent BC at 0.1AU

Euhforia: Operational mode test

<pre># CME event list # Time of CME at 21.5Rs 2012-12-19T01:00:00 2014-12-17T04:28:00 2014-12-17T08:39:00 2014-12-19T01:12:00 2014-12-19T02:28:00 2014-12-19T21:48:00 2014-12-20T04:09:00</pre>	Lat [deg] -9.0 -3.0 30.0 -9.0 -7.0 6.0 -43.0	Lon [deg] -60.0 -34.0 5.0 -20.0 -90.0 -83.0 23.0	Width/2 [deg] 45.0 17.0 29.0 45.0 14.0 22.0 25.0	Speed [km/s] 8.500e+02 1103.0 603.0 885.0 544.0 337.0 964.0	flags 1 1 1 1 1 1
2014-12-19T21:48:00 2014-12-20T04:09:00 2015-04-17T10:00:00 2015-04-19T05:00:00	6.0 -43.0 -9.0 -19.2	-83.0 23.0 -22.0 22.0	22.0 25.0 45.0 50.0	337.0 964.0 8.000e+02 9.000e+02	1 1 1

- Strong CME on 19/12/2014 at $1:12AM \rightarrow$ simulate this one!
- Actually 6 CMEs (2 earlier and 3 later, the last one also strong)
- Use magnetogram of 19/12/2014 at 1:00AM (from GONG), and
 - calculate PFSS and relax for 10 days \rightarrow 04-14/12/2014
 - Inject the CME (and the CMEs before it) \rightarrow 14-19/12/2014

- Predict the evolution of the CME(s) \rightarrow starting from 19/12/2014, 1:12 AM
- → Three phases are identified in next movie (normally only last two will be shown)

Three phases of simulation: V_r

- calculate PFSS and relax for 10 days
- Inject the CME (and the CMEs before it)
- Predict the evolution of the CME(s)

 \rightarrow 04-14/12/2014 > 14 10/12/2014

→ 14-19/12/2014

→ from 19/12/2014, 1:12 AM

Euhforia: current status

'European heliospheric forecasting information asset'

Status update

• daily, semi real-time operations at ROB

- o code is running more or less in an operational fashion
- Validation (comparison with ENLIL & ACE) ongoing
 - Same color table as ENLIL implemented (for easy comparison)
- Synthetic ACE data & automatic comparison to in-situ observations at 1 AU now implemented
- ADAPT maps can now be used in addition to standard GONG maps

Improved plot: radial velocity V_r

Improved plot: numer density n

New ultra-high resolution SW + FR CMEs

Back ground wind with 5 AMR levels

Scaled (zoomed) movie of density (with grid)

New ultra-high resolution results: CME

2D color plot of the density at 30h when the CME is ejected with an initial velocity of 1000 km/s.

AMR has been applied on the whole grid (5 levels) according to the gradient of the density.

100

80

New ultra-high resolution results

New ultra-high resolution results

Cone-model CMEs inserted at 21.5 AU as time-dependent boundary condition

Euhforia: current status

'European heliospheric forecasting information asset'

Upcoming next

• Further on-going model improvements

- Update coronal model to MPI-AMRVAC, i.e. with AMR
- Improve CME model (start from G&L magnetic flux rope)
- including the possibility to launch flux rope CMEs (the parameters of the FR need to be given as input by the forecaster)
- Validation (comparison with ENLIL, ACE,...)
- Integration in SWE forecasting activities at ROB
- Visualisation improvements, integration with Helioviewer: TBD
- optimizations of the code
- Make code OPEN SOURCE

Euhforia: long term goals 'European heliospheric forecasting information asset'

Our long-term goal is to develop novel models to address the growing need for accurate space weather predictions :

- predict the magnetic structure of coronal mass ejections
- predict the properties of solar energetic particle (SEP) events

provide tailored SW models

Euhforia: connectivity issue

sing the ADAPT agnetogram for 2010-1-01T00:00

ed curve = field line om SolO (orbital osition at 2020-101T00:00)

So the field line that connects to SolO is originating from the polar coronal hole in the south.

KU LEUVEN

Euhforia: connectivity issue

MOVIE

- shows the wind using the ADAPT magnetogram for 2010-01-01T00:00
- The red curve is the field line from **SolO** (orbital position at 2020-01-01T00:00) to the corona traced through the MHD,SCS,PFSS models:
 - The SCS, like PFSS, does not include rotation, that's why the field lines are not curved below 21.5 Rs.
 - Also, between the SCS and PFSS models the field jumps. This is a known feature of the combined model.
 - The white curves show other field lines, and the gray circles indicate r = 0.5, 1, 1.5 AU.
 - Once the view zooms closer to the corona, the open field regions are plotted on top of the radial magnetic field.

So the field line that connects to SolO is originating from the polar coronal hole in the south.